skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bruno, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pep-TCRNet is a novel approach to constructing a prediction model that can evaluate the probability of recognition between a TCR and a peptide amino acid sequence while combining inputs such as TCR sequences, HLA types, and VJ genes.Pep-TCRNet operates in two key steps:Feature Engineering: This step processes different types of variables:TCR and peptide amino acid sequencing data: The model incorporates neural network architectures inspired by language representation models and graph representation model to learn the meaningful embeddings.Categorical data: Specialized encoding techniques are used to ensure optimal feature representation for HLA types and VJ genes.Prediction Model: The second step involves training a prediction model to evaluate the likelihood of a TCR recognizing a specific peptide, based on the features generated in the first step. 
    more » « less